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Abstract 

The introduction of airbags into automobiles has 
significantly improved the safety of the occupants.  
Unfortunately, airbags can also cause fatal injuries if the 
occupant is a child smaller (in weight) than a typical 6 
year old. In response to this, The National Highway 
Transportation and Safety Administration (NHTSA) has 
mandated that starting in the 2006 model year all 
automobiles be equipped with an automatic suppression 
system to detect the presence of a child or infant and 
suppress the airbag.   The classification problem we 
address is a four-class problem with the classes being 
rear-facing infant seat, child, adult, and empty seat. We 
describe a machine vision-based occupant classification 
system using a single greyscale camera and a digital 
signal processor that can perform this function in ”real 
time” (< 5 seconds). The system has been extensively 
tested on a database of over 21,000 real-world images 
collected over a period of 4 months in moderate lighting 
conditions with a wide variety of passengers in eight 
different vehicles. We have achieved a classification 
accuracy of ~95%. .  We believe this system serves the 
need for a low-cost, high reliability embedded real-time 
airbag suppression system. Additional testing and 
improvements of the classification system are currently 
underway. 

1. Introduction 

Recently, there has been considerable attention paid to 
developing ‘smart’ airbags that can determine not only if 
they should be deployed in a crash event but also with 
what force they should be deployed [1, 2, 3, 4]. The size 
and type of occupant needs to be used to determine the 
safe level of force used to deploy the airbag. 

In May 2001 the U.S National Highway Transportation 
and Safety Administration (NHTSA) defined the Federal 
Motor Vehicle Safety Standard (FMVSS) 208 that 
mandates automatic airbag suppression when an occupant 
smaller than a 6 year old child is in the passenger seat [8].  

The standard also calls for suppression of the airbag for 
Rear Facing Infant Seat (RFIS) and Forward Facing child 
seats and booster seats and enabling the airbag when the 
occupant is a 5th percentile (by weight) adult female or 
larger. This standard was proposed because a number of 
small children and infants have been killed by airbags.  
Between 1986 and 2001, 19 infants in RFISes and 85 
children were killed by airbags [9].   Figure 1 shows the 
effects of an airbag on a RFIS during deployment. 

The recognition of the occupant type (i.e., RFIS, child, 
adult, empty seat) is referred in the NHTSA standard as 
static suppression. The NHTSA specification is written 
around the use of a seat weight sensor, which measures 
the weight of the occupant and infers whether it is of 
sufficient weight to be an adult.   A wide variety of 
systems have been proposed for solving this problem [1, 
2, 3, 4].  The aim of this paper is to show the applicability 
of machine vision (using a single B/W camera) to solve 
the airbag static suppression problem. We highlight some 
of the difficulties of the airbag suppression problem, 
propose a novel processing framework, and show the 
resulting performance. 

2.     Airbag Suppression Problem 

The airbag suppression decision problem can be 
defined as a 4-class problem: (i) RFIS, (ii) Child (< 25.6 
kg in weight & < 124.5 cm tall), (iii) Adult (> 46.7 kg in 
weight & > 139.7 cm tall), and (iv) Empty.  The airbag is 
only deployed when the passenger is assigned to the adult 
class.   Figure 2 shows examples of each of the classes.  
According to the NHTSA specification, the system must 
determine the classification of the occupant within 10 
seconds of a change of occupant state (i.e., from empty to 
adult) [8].  In addition to this time constraint, the NHTSA 
specification also requires 100 percent correct 
classification for a subset of possible seating positions for 
all of the occupant types listed above. 

The use of computer vision in the automobile 
environment is challenging due to the extreme variations 
in lighting from bright daylight to dark night as seen in 
Figure 3.  Additionally, in very bright sunlight the image 
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may have considerable dynamic range due to the 
simultaneous existence of shadows near the occupant’s 
legs and bright patches due to direct sunlight on the head 
and torso.    Since the vehicle is moving, there are both 
moving and stationary shadows caused by sunlight that 
further complicate the problem. 

               (a)                                  (b) 
Figure 1. RFIS during airbag deployment;              
(a) RFIS before deployment, (b) RFIS after 
deployment.

Figure 2. Examples of the four classes; (a) RFIS, 
(b) child, (c) adult, (d) empty.

Figure 3. Demonstration of lighting variability. 

Other complications include the large intra-class 
variability for three of the classes mentioned above (the 
empty seat class has very little intra-class variability aside 
from lighting changes).  For the child and RFIS classes, 

there are a number of seat types as well as seating 
positions that must be recognized, and the similarity 
between them is often not very high as shown in Figure 4.  
One further complication is that RFIS and booster seats 
may be covered with blankets to protect the children from 
sunlight and cold (see Figure 5) [8].  The adult class also 
has a large amount of intra-class variability, as shown in 
Figure 6, due to the following three factors: 

1) Variability from the 5th percentile female to the 
95th percentile male is 10 inches and 75 pounds.   

2) Variability in adult appearance due to hair and 
clothing variations. 

3) Seasonal variability as clothing changes from only 
shirts to down parkas and hats. This variation is 
present not only from person-to-person but for the 
same person from season-to-season. 

To summarize, a vision-based system for airbag 
suppression must be robust enough to handle the 
following conditions: 

1) Large intra-class variability of the four classes 
2) Camouflaged classes (e.g., blanketed RFIS) 
3) Large variation in light levels (day to night) 
4) Large lighting variations within an image 

(shadows to bright direct sunlight) 
5) Severe automotive environmental conditions 
6) Low cost 
7) Extremely high reliability and performance 

3. System Description 

Figure 7 shows the block diagram of the proposed 
airbag suppression system. The classification processing 
is executed every 3-5 seconds to meet the NHTSA 
specification [8].   The system is physically composed of 
a single monochrome digital CMOS camera with a wide 
field-of-view lens, a bank of LED illuminators, a Digital 
Signal Processor, and a control micro-processor. The 
camera is a commercial-off-the-shelf 400x320 pixels 
camera without the standard IR filter to allow the camera 
to use the supplemental IR illumination in dark 
conditions. The illuminators consist of a bank of infra-red 
LEDs geometrically configured to provide roughly 
uniform illumination over the passenger area of the 
vehicle.  The illuminators also contain a diffuser to ensure 
eye safety and uniform light levels over the field-of-view. 

The Digital Signal Processor performs the image 
processing functions in real-time.  The micro-processor is 
responsible for system diagnostics and for maintaining 
communications with the other subsystems in the vehicle 
via the vehicle bus and for providing the suppression 
signal to the vehicle airbag control module. 

The system is located in the roof liner of the vehicle 
along the vehicle center-line and near the edge of the 
windshield.  This location provides a near profile view of 
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the occupant in the passenger seat, which aids in the 
classification of the occupant.  This location also reduces 
the likelihood of the occupant blocking the sensor and 
makes styling the sensor into the vehicle easier.  The 
typical field of view required for most passenger vehicles 
is roughly 100 degrees vertical FOV and 120-130 degrees 
horizontal FOV.  This FOV ensures coverage of the 
occupant from the Instrument Panel to the rear-most 
seating position when the seat is fully reclined. 

Figure 4. Intra-class variability for RFIS and child 
classes.

                   (a)                                   (b) 
Figure 5. RFIS (a) and RFIS under blanket (b).

The first stage in the Static Suppression 
(Classification) Processing is the Segmentation (see 
Figure 7).  Due to space constraints, we are unable to 
provide details of the segmentation algorithm. Upon 
completion of the segmentation, shape features are 
extracted from the resultant region of interest.  There are 
numerous methods for computing features of objects 
where shape characteristics are considered important [11]. 

For images with reasonable lighting, we use edge-
based features while for night-time imagery where the 
contrast is considerably lower, we rely on silhouette 
features.  The edge features consist of the complete 
internal edges of the occupant and the seat simultaneously 
as shown in Figure 8.  Notice that the child is nearly 
completely engulfed inside the seat boundary. Therefore, 

a traditional contour/boundary edge following algorithm 
such as Fourier Descriptors would be incapable of 
recognizing the difference between a child class and the 
empty class [11]. 

Figure 6. Intra-class variability for the adult 
class.  

Figure 7. Diagram for the Airbag Suppression 
System. 

Due to the severe lighting conditions where one part 
of the image is very dark and another is very bright, a 
simple adaptive threshold detector would often miss edges 
in an entire region of the image where the contrast is too 
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low due to either saturation or low light levels.  Also the 
edges tend to be heavily clustered into regions of high 
contrast when a simple adaptive threshold technique is 
used. We have found however, that the adaptive threshold 
edges tend to be more sensitive at distinguishing RFIS 
class so it is used for this purpose.  

                 (a)                                          (b) 

                     (c)                                          (d) 

Figure 8. Edge detection (a) input image, (b) 
segmented image, (c) adaptive threshold edge 
detection results, (d) CFAR detection. 

To maintain sensitivity for the other classes, we 
compute edges based on another edge detection process.  
The first stage processes the image with a simple gradient 
calculator, generating the x and y directional gradient 
magnitudes at each pixel.  The edge magnitude is then 
computed and processed with a Constant False Alarm 
Rate (CFAR) based detector.  Figure 8 shows the resultant 
edge map for the traditional edge detection and for the 
CFAR detection [10]. 

We used the Cell-Averaging CFAR where the average 
edge amplitude in the background window is computed 
and compared to the current edge image as shown in 
Figure 9 [10].  Only the pixels that are non-zero are used 
in the background window average.  The guard region 
separates the pixel of interest from the background 
window.  For the results in this paper, a 5x5 CFAR kernel 
(see Figure 9) is used. A pixel is marked as an edge pixel 
if the ratio of the test sample amplitude to the background 
region statistic exceeds a threshold that is set by the 
desired false alarm rate of the detector). 

The CFAR Processing generates a relatively uniform 
distribution of edges across the image.  In order for the 
system to properly classify the occupant, the small, 
disconnected edge pixels are removed.  This leaves the 
major edge elements such as occupant boundary along the 
seat which are effective for discriminating occupant types.  

The mechanism for removing the smaller edges is to 
discard edges below a certain spatial extent. 

Figure 9. CFAR edge detector. 

Once the edge image has been obtained, the feature 
extraction processing is performed.  There are numerous 
candidate features that can be used [11].  The feature set 
we chose is the Legendre Moments representation of the 
edge image.  Both Chebyshev and Legendre moments 
were considered due to their efficient representation of an 
image based on a finite set of moment values [7].  
Legendre moments were chosen over Chebyshev 
moments due to the slightly simpler generating function 
and only a slight advantage in reconstruction accuracy [7]. 
The recurrence relation for the one-dimensional Legendre 
Polynomials is [6]:  
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where ijC  are the coefficients defined by the above 

polynomial generating function and the ijM  are the 

traditional geometric moments. 
We have experimented with the effects of moment 

order on classification accuracy, and these results are 
provided in Section 4.  The qualitative effects of moment 
order can be seen in Figures 10 and 11.  Figure 10 shows 
the segmentation and the edge images for a RFIS and an 
adult.  Figure 11 shows the resultant reconstructions using 
moments up to the 26th, 36th, and 45th order.  Clearly, 
there is a significant improvement in representation as the 
moment order is increased. 

Note that the complete set of moments up to the 45th

order generate 1,081 features. To avoid the "curse of 
dimensionality", we apply a feature selection algorithm to 
reduce the feature set to 50 features for each class.  With 4 
subclasses (RFIS, child, adult, empty), this generates a 
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maximum of 200 features.  Since there are often some 
common features between the classes, the final number of 
features is roughly 150.  The feature selection algorithm is 
a filter method where we rank the relative discriminative 
ability of each feature and select the best features. The 
measure of discrimination is based on the Mann-Whitney 
test statistic.   In addition to feature selection, the features 
are also scaled to be between [0, 1] to reduce the effects 
of large amplitude features skewing the distance metrics 
of the classifier. 

Figure 10. Segmented and edge image for RFIS 
(a) and Adult (b).

The other two paths are for the two types of k-NN 
classifiers: the traditional k-NN classifier and a distance-
based k-NN classifier. For both of these classifiers, k=9 
provided the best results.   The distance-based k-NN 
classifier computes the average distance of the test sample 
to the k-nearest training samples in each class. For 
example, it computes the mean for the top k RFIS training 
samples, the top k adult samples, etc.  The final decision 
is to choose the class with the lowest average distance to 
its k-nearest neighbors.  The distance metric we use is the 
Manhattan distance for each of these classifiers. The 
classifier combiner shown in Figure 12 simply takes an 
average of the probabilities from each of the four 
classifiers. 

The classifier uses four different nearest neighbor-
based classifiers as shown in Figure 12. The two paths 
shown correspond to the types of edges used to generate 
the moment features (traditional adaptive threshold edges 
and CFAR edges). 

4. Experimental Results 

The airbag suppression system has been integrated into 
an automobile for both training and test data collection.  
Performance testing of the classification system has been 
done using the Leave-One-Out method. The test database 
consists of 21,000 images collected over a 4 month 
period. The data was collected in 5 different cars over a 
period of 4 months.  The data consisted of 20 different 

types of child seats.  It also consisted of both ATDs (crash 
test dummies) and real adults.  The breakdown of the 
imagery is as follows: 

RFIS 7753 
child 5994 
adult 3243 
   - ATD 619 
   - human 2624 
Empty 4868 

Total 21858 

The RFIS and forward facing child seat images were 
collected with realistic looking dolls used as subjects.  
The three-year old and six-year old subjects were (ATDs). 
Table 1 provides the confusion matrix for testing against 
the entire database using maximum moments of orders 26, 
36, and 45.  An additional larger database will be used for 
future testing that contains data collected at local schools 
to  enable us to collect human child images.  The current 
images were collected in indoor and outdoor conditions, 
however the vehicle was not moving due to collection 
difficulties with moving vehicles. 

The classification results are encouraging considering 
the large intraclass variation with an overall classification 
accuracy of better than 95 %.  The expected performance 
for this system is very aggressive.  The NHTSA 
specification mandates that the system perform with 
100% accuracy on a set of well-defined test conditions 
[8].  Unfortunately, these test conditions mandate the 
covering of all of the infant carseats with large blankets.  
This causes overlap into the adult class that may not be 
repairable.  The test database did not contain blankets. 

These current results are the output of an ongoing 
research and development project, and we will continue to 
release additional results as they become available.  An 
example of an image that was mis-classified can be fond 
in Figure 13.  This image was a child but was mis-
classified as an empty seat due to the poor segmentation. 

5. Summary and Conclusions 

We have shown the applicability of machine vision to 
the airbag static suppression problem. We have 
highlighted some of the challenges in designing a 
machine vision system for this application domain. A 
novel processing framework using two parallel edge 
detectors for feature extraction is proposed.  A classifier 
combination strategy based on multiple k-nearest 
neighbor classifiers is defined. Overall, the system 
provided a correct classification rate of 95 % on a 
database of over 21,000 images collected in an 
automobile in a variety of occupant seating scenarios.   
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Our future work will be directed at testing in actual 
drive conditions where the history processing can be fully 
tested.  More robust combination strategies will also be 
investigated for use in these drive conditions.  We will 
also investigate using even higher precision math to allow 
the use of higher order moments.  We will also continue 
to improve the edge detection processing to ensure the 
system operates in even the most severe lighting 
conditions.  The moments of these edge images are also 
only one possible feature set.  We will investigate using a 
combination of these features with additional shape 
features to seek further improvements. 

Figure 11. RFIS and Adult reconstructions for 
moments of up to 25th (a), 35th (b), and 45th             
(c) order.

Figure 12. Classifier architecture. 

(a)     45th order moments 
 RFIS child adult empty 

RFIS 7053 590 5 1 
child 13 5819 2 5 
adult 19 490 2615 16 
empty 0 12 0 4830 

(b)     36th order moments 
 RFIS child adult empty 

RFIS 6986 657 5 1 
Child 15 5813 6 5 
Adult 18 488 2619 15 
Empty 0 14 0 4828 

(c)     26th order moments 
 RFIS child adult empty 

RFIS 6942 698 7 2 
child 7 5820 3 9 
adult 21 530 2570 19 
empty 0 17 0 4825 
Table 1. Leave-one-out classification results. 

Figure 13. Classification error example (a) 
original image of adult, (b) segmented image 
thought to be a RFIS. 
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